Министерство образования и науки Республики Татарстан Государственное автономное профессиональное образовательное учреждение «Актанышский технологический техникум»

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП. 02. АРХИТЕКТУРА АППАРАТНЫХ СРЕДСТВ

код и наименование дисциплины

для специальности

09.02.07 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ПРОГРАММИРОВАНИЕ

код и наименование специальности

Контрольно-оценочные средства по учебной дисциплины разработаны на основе Федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.07 Информационные системы и программирование

Организация разработчик:

Государственное автономное профессиональное образовательное учреждение ГАПОУ «Актанышский технологический техникум» (ГАПОУ «АТТ»)

Разработчик:

Анварова Э.Ф., преподаватель ГАПОУ «АТТ»

Оглавление

1. Паспорт комплекта контрольно-оценочных средств	4
2. Оценка освоения учебной дисциплины:	5
2.1. Формы и методы оценивания	5
2.2. Типовые задания для оценки освоения учебной дисциплины	5

1. ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ОЦЕНОЧНЫХ СРЕДСТВ

В результате освоения учебной дисциплины ОП.02 Архитектура компьютерных систем обучающийся должен обладать предусмотренными ФГОС по специальности СПО 09.02.07 «Информационные системы и программирование», квалификация – программист следующими умениями, знаниями, которые формируют профессиональную компетенцию, и общими компетенциями:

В результате освоения дисциплины обучающийся должен уметь:

У1получать информацию о параметрах компьютерной системы;

У2подключать дополнительное оборудование и настраивать связь между элементами компьютерной системы;

УЗ производить инсталляцию и настройку программного обеспечения компьютерных систем.

В результате освоения дисциплины обучающийся должен знать:

- 31базовые понятия и основные принципы построения архитектур вычислительных систем;
- 32типы вычислительных систем и их архитектурные особенности;
- 33 организацию и принцип работы основных логически блоков компьютерных систем;
- 34 процессы обработки информации на всех уровнях компьютерных архитектур;
- 35 основные компоненты программного обеспечения компьютерных систем; 36основные принципы управления ресурсами и организации доступа к этим ресурсам.
- В результате освоения дисциплины обучающийся осваивает элементы компетенций:
- ОК.01 Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- ОК.02 Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
- ОК.04 Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
- ОК.05 Осуществлять устную и письменную коммуникацию на государственном языке с учетом особенностей социального и культурного контекста.
- ОК.09 Использовать информационные технологии в профессиональной деятельности.
- ОК.10 Пользоваться профессиональной документацией на государственном и иностранном языках.
- ПК 4.1. Осуществлять инсталляцию, настройку и обслуживание программного обеспечения компьютерных систем.
- ПК 4.2. Осуществлять измерения эксплуатационных характеристик программного обеспечения компьютерных систем.
- ПК 5.2. Разрабатывать проектную документацию на разработку информационной системы в соответствии с требованиями заказчика.
- ПК 5.3. Разрабатывать подсистемы безопасности информационной системы в соответствии с техническим заданием.
- ПК 5.6. Разрабатывать техническую документацию на эксплуатацию информационной системы.
- ПК 5.7. Производить оценку информационной системы для выявления возможности ее модернизации.
- ПК 6.1. Разрабатывать техническое задание на сопровождение информационной системы.
- ПК 6.4. Оценивать качество и надежность функционирования информационной системы в соответствии с критериями технического задания.

- ПК 6.5. Осуществлять техническое сопровождение, обновление и восстановление данных ИС в соответствии с техническим заданием.
- ПК 7.1. Выявлять технические проблемы, возникающие в процессе эксплуатации баз данных и серверов.
- ПК 7.2. Осуществлять администрирование отдельных компонент серверов. ПК 7.3. Формировать требования к конфигурации локальных компьютерных сетей и серверного оборудования, необходимые для работы баз данных и серверов.
- ПК 7.4. Осуществлять администрирование баз данных в рамках своей компетенции.
- ПК 7.5. Проводить аудит систем безопасности баз данных и серверов, с использованием регламентов по защите информации.

2. ОЦЕНКА ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ:

2.1. Формы и методы оценивания

Предметом оценки служат умения и знания, предусмотренные ФГОС по дисциплине ОП. 02 Архитектура компьютерных систем, направленные на формирование общих и профессиональных компетенций.

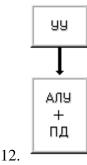
2.2. Типовые задания для оценки освоения учебной дисциплины

Контрольные задания №1

Вариант № 1

- 1. Что такое основная память компьютера?
- 2. Дать определение понятию «триггер»?
- 3. Перечислить назначение и основные характеристики ОЗУ.
- 4. Что такое ассоциативная память компьютера?
- 5. Описать виды больших интегральных схем ПЗУ.

Вариант № 2


- 1. Что кэш память компьютера?
- 2. Дать определение понятию «сумматор»?
- 3. Перечислить назначение и основные характеристики ПЗУ.
- 4. Что такое расслоение памяти?
- 5. Описать виды больших интегральных схем ОЗУ.

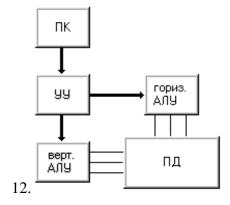
Контрольные задания №2

Вариант 1

- 1 задание. Выберите правильные ответы
- 1. Дощечка покрытая слоем пыли, на которой острой палочкой проводились линии и выкладывались какие-нибудь предметы называлась:
- а. вестоницкая кость;
- б. абак;
- в. соробан;
- г. костяшки Непера.
- 2. Как называется система счисления, в которой каждая цифра имеет одно и тоже значение независимо от положения в записи числа?
- а. позиционная;
- б. непозиционная;
- в. арабская;
- г. римская.
 - 3. Логический элемент ЭВМ для сложения чисел:
- а. триггер;
- б. сумматор;

- в. дешифратор;
- г. шифратор.
 - 4. Количество бит, обрабатываемых процессором за один прием:
- а. система команд;
- б.быстродействие;
- в.максимальный объем адресуемой памяти;
- г. разрядность.
 - 5. Память ЭВМ это:
- а. процессор, который является «мозгом» компьютера;
- б. совокупность всех запоминающих устройств ЭВМ;
- в. совокупность триггеров для запоминания информации;
- г. место, для хранения ненужной информации.
- 6. Вид памяти, которая предназначена для промежуточного хранения информации при обмене данными между устройствами ЭВМ:
- а. ОЗУ;
- б. ПЗУ;
- в. БЗУ;
- г. ППЗУ.
- 7. Отношение емкости запоминающего устройства к его физическому объему называется:
- а. емкостью:
- б. удельной емкостью;
- в. быстродействием;
- г. оперативностью.
- 8. Микроканальная архитектура, несовместимая с ISA/EISA, ориентированная на асинхронное функционирование шины и процессора
- a ISA:
- б. МСА;
- в. PCI;
- г. EISA.
 - 9. Оптическая мышь -...
- а. движение фиксируется механически и связано с перемещением частей устройств.
- б. движение шарика отслеживается с помощью двух валиков с прорезями и двух оптических пар светодиод-фотодиод.
- в. движение отслеживается с помощью двух пар светодиодов и фотоэлементов.
- г. это стержень-ручка, отклонение которой от вертикального положения приводит к передвижению курсора в соответствующем направлении по экрану монитора.
 - 10. Ручной сканер...
- а. Оригинал автоматически перемещается относительно сканирующей головки, часто имеется автоматическая подача документов
- б. Внешне напоминают фотоувеличитель: внизу лежит сканируемый документ, а наверху находится сканирующая головка
- в. Бумажный лист с изображением или текстом кладется на прозрачную стеклянную поверхность, под которой проходит распознающий элемент сканера, и закрывается крышкой
- г. Прокатывают по поверхности документа рукой
- 11. Предложения в языке программирования Ассемблер: внутри идентификаторов и чисел пробелы
- а. возможны;
- б. недопустимы;
- в. обязательны;
- г. допустимы.

- а. Классификация Хендлера;
- б. Классификация Шора;
- в. Классификация Хокни;
- г. Классификация Скилликорна.
- 13. Архитектура суперкомпьютера, в которой каждый процессор имеет свою оперативную память:
- а. параллельная мультипроцессорная обработка;
- б. асимметричная мультипроцессорная обработка;
- в. симметричная мультипроцессорная обработка;
- г. последовательная мультипроцессорная обработка.
 - 2 задание. Перевести числа из одной системы счисления в другую:


$$124,35_{10} - X_8;$$

 $1010110101_2 - X_{16};$
 $46,2_8 - X_{10}$

Вариант 2

1 задание. Выберите правильные ответы

- 1. Персональные компьютеры, на которых работали пользователи с общей компьютерной подготовкой, находясь за своим рабочим столом, относятся к:
 - а. Первому поколению;
 - б. Второму поколению;
 - в.Третьему поколению;
 - г. Четвертому поколению.
 - 2. Базовые цифры 16-ричной системы счисления:
 - a 0-15:
 - б. 0-9, А-Г;
 - в. 0-9, А.-G;
 - г. 1-16.
- 3. Комбинационная схема с несколькими входами и выходами, преобразующая код, подаваемый на вход, в сигнал на одном из выходов:
- а. триггер;
- б. сумматор;
- в. дешифратор;
- г. шифратор.
- 4. Классификация арифметическо-логического устройства по структуре (возможно несколько вариантов):
- а. с непосредственными связями;
- б. многосвязные;
- в. блочные;
- г. многофункциональные.
 - 5. На ЭВМ с памятью в 4 Мбайт можно:

- а. слушать современную музыку;
- б. работать в среде WindowsXP;
- в. работать в среде MS DOS и простейших текстовых редакторах;
- г. ничего нельзя делать.
 - 6. Вид памяти, информация из которой может «стекать»:
- а. динамическая память;
- б. статическая память;
- в. генерированная память;
- г. постоянная память.
 - 7.Запоминающее устройство, включаемое между ОЗУ и процессором:
- а. ПЗУ;
- б. ППЗУ;
- в. СОЗУ;
- г. БЗУ.
- 8. Шина, поддерживающая режим Plug&Play, скоростной режим пересылки пакетов данных, однозначно определяющая устройства, использующаяся в основ на файлсерверах:
- a. ISA;
- б. EISA;
- в. PCI:
- г. МСА.
 - 9. Печатающие устройства бывают (возможно несколько вариантов):
- а. посимвольные.
- б. построчные,
- в. постраничные,
- г. познаковые.
 - 10. Плоттер ...
- а. устройство для вывода информации из компьютера
- б. устройства для оцифровки и ввода в компьютер изображений с бумажных копий
- в. электронное устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора
- г. устройство, которое чертит графики, рисунки или диаграммы под управлением компьютера.
- 11. Предложения в языке программирования Ассемблер: Переносить предложение на следующую строку или записывать два предложения на одной строке:
- а. возможно;
- б. нельзя;
- в. обязательно;
- г. иногда.

- а. Классификаия Хендлера;
- б. Классификация Шора;
- в. Классификация Хокни;
- г. Классификация Скилликорна.
- 13. Архитектура суперкомпьютера, в которой группа процессоров работает с общей оперативной памятью:
- а.параллельная мультипроцессорная обработка;
- б.асимметричная мультипроцессорная обработка;
- в.симметричная мультипроцессорная обработка;
- г. последовательная мультипроцессорная обработка.
 - 2 задание. Сложить числа в двоичной и десятичной системах счисления:
 - a) $100101011_2 + 100111100_2 X_2$;
 - b) $37_8 + 25_8 X_{10}$

Эталон ответов к контрольным заданиям

Залание 1.

эаданис								
	1	2	3	4	5	6	7	8
1	б	Γ	a	В	б	a	б	a
2	б	б	б	a	a	a	б	б
3	б	В	Γ	a	б	a	Γ	В
4	Γ	а, б	В, Г	В, Г	а, б	В, Г	a	б
5	Γ	В	a	a	В	В	a	В
6	В	a	В	a	В	б	a	б
7	б	В	В	б	a	б	a	б
8	б	б	a	В	б	a	б	Γ
9	В	а, б, в	б	б	а, б, в, г	В	a	а, б
10	Γ	Γ	б	б	Γ	a	Γ	В
11	б	б	а, б, в	a	a	б, в, г	а, в, г	а, в, г
12	б	б	В	a	В	Γ	a	Γ
13	б	В	a	Γ	В	б	Γ	Γ

Контрольные задания №3

Вариант 1	Вариант 2
1. Кто является основоположником	1. Слово "логика" обозначает
математической логики:	а) форма мышления, в которой отражаются
а) Аристотель	признаки предмета
б) Декарт Рене	б) совокупность правил, которым
в) Лейбниц Г.В.	подчиняется процесс мышления
г) Джордж Буль	в) мысль, к которой что-то утверждается
	или отрицается о предметах
	г) прием мышления, когда из исходного
	знания получается новое знание
2. Логическая операция, соответствующая	2. Логическая операция, соответствующая
союзу "И" – это	союзу "ИЛИ" – это
а) импликация	а) импликация
б) эквиваленция	б) эквиваленция
в) дизъюнкция	в) дизъюнкция

г) конъюнкция	г) конъюнкция
3. Логическая операция, соответствующая	3. Логическая операция, соответствующая
союзу "ЕСЛИ, ТО" – это	союзу "ТОГДА И ТОЛЬКО ТОГДА,
а) импликация	КОГДА" – это
б) эквиваленция	а) импликация
в) дизъюнкция	б) эквиваленция
г) конъюнкция	в) дизъюнкция
	г) конъюнкция
4. Высказывание А →В ложно тогда и	 Высказывание А ↔В истинно, тогда и
только тогда, когда	только тогда, когда
а) А истинно, а В ложно	Выберите один из 4 вариантов ответа:
б) А и В совпадают	а) А истинно, а В ложно
в) А ложно, а В истинно	б) А и В совпадают
г) А и В истинны	в) А ложно, а В истинно
	г) А и В истинны
5. Что не относится к периферийным	5. К позиционным системам счисления не
устройствам?	относится
а) манипуляторы;	а) римская СС;
б) жесткий диск;	б) десятичная СС;
в) модем;	в) двоичная СС;
г) ОЗУ.	г) шестнадцатеричная СС.
6. Что такое микропроцессор?	6. Назначение процессора:
А) интегральная микросхема, которая	А) управлять работой ПК с помощью
выполняет поступающие на ее вход	электрических импульсов;
команды (например, вычисление) и	В) подключать периферийные устройства к
управление работой машины;	магистрали;
В) устройство для хранения той	С) выполнять команды одной программы в
информации, которая часто используется	данный момент;
в работе;	Д) выполнять арифметико-логические
С) устройство для вывода текстовой или	операции и управлять ходом
графической информации;	вычислительного процесса.
Д) устройство для ввода алфавитно-	вы помительного продессы.
цифровых данных.	
7. Найдите соответствие: Hardware - это:	7. Найдите соответствие: Software – это:
А) самая популярная система для	А) программа вспомогательного
компьютеров ІВМ РС;	назначения;
В) аппаратная часть компьютера;	В) система «включил и работай»
С) система, обеспечивающая создание	С) программное обеспечение компьютера;
новых программ;	Д) программы для подключения к
Д) модернизация аппаратной или	компьютеру новых устройств
программной части компьютеров	Resimble topy Hobbin yelponetb
8. Внешняя память необходима для:	8. ОЗУ – это память, в которой:
А) для хранения часто изменяющейся	А) хранится исполняемая в данный момент
информации в процессе решения задачи;	времени программа и данные, с которыми
В) для долговременного хранения	она непосредственно работает;
информации после выключения	В) хранится информация, присутствие
компьютера;	которой постоянно необходимо для работы
С) для обработки текущей информации;	конпьютера;
D) для постоянного хранения информации	С) хранится информация, независимо от
о работе компьютера.	того работает компьютер или нет;
o paoore komindiorepa.	Д) хранятся программы, предназначенные
	для обеспечения диалога пользователя с
	для обсепечения диалога пользователя с

	компьютером
9. Что такое КЭШ-память?	9. Что такое адресное пространство?
А) память, в которой обрабатывается	А) Максимальное количество разрядов
программа в данный момент времени;	двоичного кода для символа;
В) память, в которой хранится	В) периодичность импульсов,
информация, после выключения ПК;	синхронизирующих работу устройств
С) сверхоперативная память для хранения	компьютера;
часто используемых данных ОЗУ;	С) множество адресов ячеек памяти, к
Д) память, в которой хранятся системные	которым обращается процессор;
файлы операционной системы.	Д) сигнал, определяющий характер обмена
	информацией.
10. Укажите, в каких случаях	10. Укажите, в каких случаях высказывание
высказывание истинно, а в каких ложно:	истинно, а в каких ложно:
$(\overline{A \Rightarrow B}) \Leftrightarrow (\overline{B} \wedge \overline{A})$	$\left((\overline{A \wedge B}) \Rightarrow A \right) \Leftrightarrow \left(A \downarrow B \right)$

Эталоны ответов к контрольной работе по дисциплине ОП.02Архитектура компьютерных систем

№ вопроса	1	2	3	4	5	6	7	8	9
Вариант 1	Г	Γ	a	a	Γ	a	В	В	Д
Вариант 2	б	В	б	Γ	a	С	c	a	c

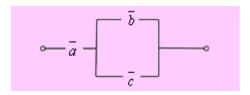
Вариант 1

- 10. Истинно при A=0, B=1 и при A=1 и B=1, Ложно при A=0, B=0 и при A=1, B=0. Вариант 2.
- 10. Истинно при A=0, B=1, Ложно при A=0, B=0 и при A=1, B=0, при A=1 и B=1.

Контрольные залания №4

Вариант 1	Вариант 2				
1. Виды памяти более высокого уровня	1. К энергонезависимой памяти				
имеют	относится				
а) меньший объем, меньшую скорость	а) ПЗУ;				
доступа;	б) ОЗУ;				
б) меньший объем, большую скорость	в) жесткий диск;				
доступа;	г) flash.				
в) больший объем, меньшую скорость					
доступа;					
г) больший объем, большую скорость					
доступа					
2. Минимальная единица информации	2. Системная шина не содержит				
в двухуровневой иерархии - это	а) шину адреса;				
а) байт;	б) шину данных;				
б) ячейка;	в) АЛУ;				
в) кластер;	г) шину управления.				
г) блок.					
3. Использование кэш-памяти в	3. Скорость работы компьютера				
качестве буфера между процессором	зависит от				
и памятью — это	а) объема жесткого диска;				
а) чередование памяти;	б) наличия периферийных устройств;				
б) разбиение памяти на страницы;	в) скорости нажатия на клавиши				
в) кэширование памяти;	клавиатуры;				
г) фрагментация памяти.	г) объема оперативной памяти.				

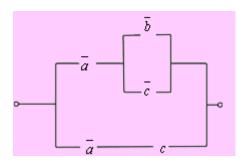
4. Узел, предназначенный для приема,	4. Запоминающим элементом
временного хранения и выдачи	динамической памяти является
машинного слова - это	а) конденсатор;
а) регистр;	б) триггер;
б) триггер;	в) регистр;
в) счетчик;	г) полусумматор.
г) сумматор.	
5. Последовательные и асинхронные	5. Регенерация памяти – это
сумматоры – это	а) очистка памяти;
а) комбинационные сумматоры;	б) увеличение памяти;
б) накапливающие сумматоры;	в) уменьшение памяти;
в) дублирующие сумматоры;	г) восстановление памяти.
г) идеальные сумматоры, все разряды	
которых срабатывают одновременно.	
6. Количество выходов мультиплексора	6. Сколько существует уровней кэш-
называется	памяти?
а) каналами;	а) только 1;
б) разрядами;	б) только 2;
в) количеством каналов мультиплексора;	в) только 3;
г) количеством разрядов мультиплексора.	г) 3 и более.
7. Что не относится к периферийным	7. К позиционным системам счисления
устройствам?	не относится
а) манипуляторы;	а) римская СС;
б) жесткий диск;	б) десятичная СС;
в) модем;	в) двоичная СС;
г) ОЗУ.	г) шестнадцатеричная СС.
8. Специализированная интегральная	8. Идентификатор, присвоенный
схема, работающая в содружестве с ЦП,	различным объектам, которые должны
но менее универсальная – это	быть распознаны процессором – это
а) сопроцессор;	а) уровень кэш;
6) CPU;	б) уровень привилегий;
в) ОЗУ;	в) уровень буферизации;
г) АЛУ.	г) уровень контроля.
·	7 7 2
9. Закончите предложение	9. Закончите предложение
	Число триггеров в регистре определяет
Унитарным называется двоичный код,	·
содержащий	
10. По данной формуле составить	10. Упростить РКС:
PKC _	\bar{b}
avbлс $\rightarrow \bar{a}_{\Lambda}\bar{b}$	
	- c - L
	_
	a c
Эталония у долодой и	срезовой контрольной работе


№ вопроса

Вариант 1	б	Г	В	a	б	Г	Г	a	Одну и только одну
									единицу
Вариант 2	б	В	Γ	a	Γ	Γ	a	б	Разрядность
									регистра.

Вариант 1

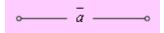
10 Решение. Упростим данную формулу с помощью равносильных преобразований:


$$a \lor bc \to \overline{a} \land \overline{b} = \overline{a \lor bc} \lor \overline{a} \land \overline{b} = \overline{a} \land (\overline{b} \lor \overline{c}) \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{c} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{b} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{a} \land \overline{b} = \overline{a} \land \overline{b} \lor \overline{b} = \overline{a} \land \overline{b} \lor \overline{b} \to \overline{b} \lor \overline{b} \to \overline{b}$$

Тогда РКС для данной формулы имеет вид:

Вариант 2

10. Упростить РКС:



Решение. Составим по данной РКС формулу (функцию проводимости) и упростим ее:

$$\bar{a} \wedge (\bar{b} \vee c) \vee \bar{a} \; \bar{c} = \bar{a} \; \bar{b} \vee \bar{a} c \vee \bar{a} \; \bar{c} = \bar{a} \; \bar{b} \vee \bar{a} \wedge (\bar{c} \vee c) = \bar{a} \; \bar{b} \vee \bar{a} = \bar{a} \wedge (\bar{b} \vee 1) = \bar{a}$$

(к последним двум слагаемым применили закон поглощения).

Тогда упрощенная схема выглядит так:

Экзаменационные билеты по дисциплине ОП.02 Архитектура компьютерных систем Билет №1

- 1. Основные характеристики ЭВМ
- 2. Сумматоры
- 3. Являются ли эквивалентными следующие высказывания:

$$x|(y \oplus z)_{\mathsf{H}}(x|y) \lor (x|z)$$

- 1. Триггеры
- 2. Внешняя память

3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ для высказывания: $\left((\overline{A \wedge B}) \Rightarrow A\right) \Rightarrow A \vee B$

Билет №3

- 1. ОЗУ и ПЗУ: назначение и основные характеристики
- 2. Арифметические операции в алгебре логики
- 3. Перевести числа 210 и 30 из десятичной системы счисления в двоичную, произвести их сложение и деление в двоичном коде

Билет №4

- 1. Третье поколение ЭВМ
- 2. Минимизация логических функций
- 3. Укажите, в каких случаях высказывание истинно, а в каких ложно:

$$\left((\overline{A \wedge B}) \Rightarrow A\right) \Leftrightarrow (A \vee B)$$

Билет №5

- 1. Шифраторы и дешифраторы
- 2. Последовательный интерфейс ввода-вывода
- 3. Являются ли эквивалентными следующие высказывания:

$$(\overline{A \vee B}) \vee (\overline{B} \wedge \overline{A}) \ u \ ((A \vee B) \oplus \overline{B}) \Longrightarrow A$$

Билет №6

- 1. Классификация средств ЭВТ
- 2. Параллельный интерфейс ввода-вывода
- 3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ. для высказывания: $(\overline{z} \Rightarrow y) \Leftrightarrow (\overline{z} \lor \overline{x})$

Билет №7

- 1. Логические элементы
- 2. Режимы работы процессора
- 3. Для чисел 27₁₀ и 13₁₀ записать прямой, обратный и дополнительный код

Билет №8

- 1. Системы счисления, применяемые в ЭВМ
- 2. Модули памяти
- 3. Укажите, в каких случаях высказывание истинно, а в каких ложно:

$$(\overline{z} \vee y) \rightarrow (\overline{z} \oplus \overline{x})$$

Билет №9

- 1. Виртуальная память
- 2. Регистры
- 3. Являются ли эквивалентными следующие высказывания:

$$(\overrightarrow{A\Longrightarrow B})\wedge \left(\overline{B} \Longleftrightarrow \overline{A}\right)\ u\ \left(\left(A\Longrightarrow B\right)\wedge \overline{B}\right) \oplus A$$

- 1. Центральный процессор
- 2. Оценка производительности вычислительных систем
- 3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ.

для высказывания: $(x|y) \rightarrow (x|z)$

Билет №11

- 1. Страничная память
- 2. Многомашинные и многопроцессорные вычислительные системы
- 3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ.

для высказывания: $(\overline{A \wedge B}) \Leftrightarrow (\overline{B} \oplus \overline{A}) \Leftrightarrow (A \vee B) \oplus (A \oplus \overline{B})$

Билет №12

- 1. Первое поколение ЭВМ
- 2. Многопрограммная работа ЭВМ
- 3. Укажите, в каких случаях высказывание истинно, а в каких ложно: $(x \lor \overline{y}) \to (\overline{z} \oplus \overline{x})$

Билет №13

- 1.Коды чисел
- 2. Порты USB
- 3. Являются ли эквивалентными следующие высказывания:

$$(\overline{A \wedge B}) \Leftrightarrow (\overline{B} \oplus \overline{A}) \ u \ (A \vee B) \oplus (A \oplus \overline{B})$$

Билет №14

- 1. Сегментированная память
- 2. Порты SCSI
- 3. Решить задачу средствами алгебры логики.

Намечаются экскурсии в три города A, B и C. Руководитель фирмы сказал: «Неверно, что если будет экскурсия в город B, то не будет экскурсии в город C. Если будет экскурсия в город C, то не будет экскурсии в город A.» В какие города будет проводиться экскурсия?

Билет №15

- 1. Системные платы
- 2. Большие интегральные схемы
- 3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ.

для высказывания: $((x \downarrow y) \rightarrow z) \oplus y$

Билет №16

- 1. Второе поколение ЭВМ
- 2. Иерархия памяти
- 3. Укажите, в каких случаях высказывание истинно, а в каких ложно: $((x \downarrow y) \to z) \oplus y$

Билет №17

- 1. Модификация памяти типа SRAM
- 2. Ввод-вывод
- 3. Упростить логическую формулу: $\overline{x} \wedge \overline{y} \to x \vee (x \wedge y)$.

- 1. Машинные коды
- 2. Классификация и характеристика запоминающих устройств

3. С помощью таблиц истинности проверить, являются ли равносильными формулы

$$x \to (\bar{x} \land \bar{y}) \ _{\mathsf{H}} \ \bar{x} \lor \overline{x \lor y}.$$

Билет №19

- 1. Формы представления чисел в ЭВМ
- 2. Энергонезависимая память
- 3. Укажите, в каких случаях высказывание истинно, а в каких ложно:

$$(z \to x) \leftrightarrow (y|x)$$

Билет №20

- 1. Большие интегральные схемы
- 2. Режимы работы процессоров
- 3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ.

для высказывания:
$$(x|\overline{y}) \oplus (z \to \overline{x})$$

Билет №21

- 1. Основные характеристики процессоров
- 2. Счетчики
- 3. Являются ли эквивалентными следующие высказывания:

$$(x|y) \rightarrow (x|z) \ u \ (\overline{z} \lor y) \rightarrow (\overline{z} \oplus \overline{x})$$

Билет №22

- 1. Мультиплексоры
- 2. Шины
- 3. Перевести числа 35 и 20 из десятичной системы счисления в двоичную, произвести их вычитание и умножение в двоичном коде

Билет №23

- 1. Четвертое поколение ЭВМ
- 2. Микросхемы системной логики
- 3. Начертить схему логического устройства для выражения

$$(\overline{z} \vee y) \rightarrow (\overline{z} | (y \vee \overline{x}))$$

Билет №24

- 1. Вычислительные системы и их архитектура
- 2. Модификация памяти типа DRAM
- 3. Построить таблицу истинности, найти СНДФ, найти минимальную ДНФ. для высказывания: $(x \lor \overline{y}) \to (\overline{z} \oplus \overline{x})$

- 1. Защита памяти
- 2. Системные ресурсы
- 3. Начертить схему логического устройства для выражения

$$(x \land y) \oplus (x \land z) \Leftrightarrow x \land (y \oplus z)$$